

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):志盛翔

DATE: (日期):2017-04-12

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GT 50V180μF(φ10X12.5)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUS	TOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	王国华		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		SPECIFICAT	ALTERNATION HISTORY RECORDS				
Rev.	Date	GT SERIE Mark	ES Page	Contents	Purpose	Drafter	Approver
Kev.	Date	Widik	1 age	Contents	T urpose	Dianci	Appiovei

	MAN YUE ELECTRONICS COMPANY LIMITED				ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES					S	SAMX	ON		
Tab	ole 1 Product Dimens	sions a	ind Ch	aracteristic	:5									
	Safety vent for $\geq \Phi$ 6.3 $L^{+\alpha}_{-1.0}$		5 min ,	$\frac{4}{4}$ d±0.0	5 -	ΦD-0.5	F±0.5	β d * lf it is	20:α=1.5; pD<20:β= flat rubbe urface.	0.5; ΦD≥]	e flat r	ubber
N 0.	SAMXON Part No.	WV (Vdc)	Cap. (µF	Cap. tolerance	Temp. range(℃)	tanδ (120Hz, 20°C)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100KHz (mA rms)	Impedance at 20°C 100kHz	Load lifetime (Hrs)		ension (mm) F	фd	Sleev e
1	EGT187M1HG1BRR**P	50	180	-20%~+20%	-40~105	0.10	90	760	(Ωmax) 0.120	7000	10X12.5	5.0	0.6	PET

Version	01	Page	9
Version	01	1 age	

1. Application		Sheet
	n	4
2. Part Numb		4
3. Constructio		5
4. Characteris	stics	5~10
4.1 Rated voltage &	k Surge voltage	5~10
4.2 Capacitance (T	olerance)	
4.3 Leakage curren		
4.4 tan δ		
4.5 Terminal streng	gth	
4.6 Temperature cl	haracteristic	
4.7 Load life test		
4.8 Shelf life tes	t	
4.9 Surge test		
4.10 Vibration		
4.11 Solderabilit	ty test	
4.12 Resistance		
4.13 Change of t	-	
4.14 Damp heat 1	test	
4.15 Vent test	nissible (ripple current)	
	ronment-related Substances to be Controlled ('Controlled	ed 11
	pplication Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR **SPECIFICATION** GT SERIES

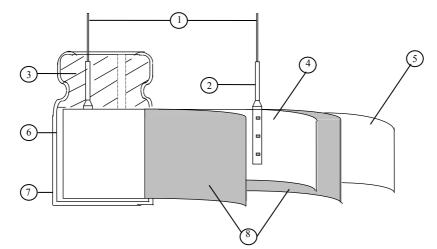
1.

Application This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Part Number System

SERIES						0.44	CASE			F	PRODUCT LINE M	
Series ESM EKF ESS	Cap(MFD) 0.1	Code 104	Tolerance (%) ±5	J	Voltage (W.V.) 2 2.5	0D 0E	Case 3 Diameter(4 3 3.5	Code B	Feature (Radial bulk	RR	SAMXON Product L For internal use only (The product lines	
EKS EGS EKM	0.22	224	±10	к	4 6.3	0G 0J	4 5 6.3	1 C D E	Ammo Tap	ing	we have H,A,B,C,D, E,M or 0,1,2,3,4,5,9	
EKG EOM EZM	0.33	334	± 15	L	8 10 12.5	0K 1A 1B	8 10 12.5	F	2.0mm Pitch	77		
EZS EGF ESF	0.47	474 105	± 20	м	16	1C 1D	13 13.5 14	J V 4	2.5mm Pitch 3.5mm Pitch	TU TV	Sleeve Material	Cod
EGT EGK EGE	2.2	225	±30	N	25 30	1E 1I	14.5 16 16.5 18	A K 7 L	5.0mm Pitch	тс	PET	P
EGD EGC ERS	3.3	335	-40	w	32 35	13 1V	18.5	8 M N	Lead Cut &	Form		
ERF ERL ERR ERT	4.7	475	-20 0	A	40 42 50	1G 1M 1H	20 22 25 30 34 35	O P W	СВ-Туре	СВ		
ERE ERD ERH	10	106	-20 +10	c	57 63	1L 1J	35 40 42 45	Q R 4 6	СЕ-Туре	CE		
EBD ERA ERB	22	226	-20 +40	x	71 75	1S 1T	45 51 63.5 76	6 S T U	KD-Type	HE KD		
ERC EFA ENP	33	336 476	-20 +50	s	80 85 90	1K 1R 19	80 90 100	8 X Z	FD-Type	FD		
ENH ERW ERY	100	107	-10	в	100 120	2A 20	Len.(mm) 4.5 5	Coste 45 05	EH-Type	EH		
ELP EAP EQP	220	227	-10 +20	v	125 150	2B 2Z	5.4 7 7.7	54 07 77	PCB Term	nial		
EDP ETP EHP EUP	330	337	-10 +30	Q	160 180	2C 2P	10.2 11 11.5	T2 11 1A		sw		
EKP EEP EFP	470	477	-10 +50	т	200 215 220	2D 22 2N	12 12.5 13	12 1B 13	Snap-in	sx		
ESP EVP EGP	2200	228	-5 +10	E	230 230 250	23 2E	13.5 20 25	1C 20 25 2J	Lug	SZ SG		
EWR EWU EWT	22000	229	-5 +15	F	275 300	2T 2I	29.5 30 31.5 35	2J 30 3A 35 3E		05		
EWX EWF EWS	47000	339 479	-5 +20	G	310 315	2R 2F	35.5 50 80	3E 50 80		06		
ewh ewl ewb	100000	10T	+20	R	330 350	2U 2V	100 105 110	1L 1K 1M	Screw	т5		
VSS VNS VKS	150000	15T	+30 0	0	360 375 385	2X 2Q 2Y	120 130 140	1N 1P 1Q		т6		
VKM VRL VNH	220000	22T	+50	ı z	400 420	2G 2M	150 155	문		D5		
VZS VRF	330000	33Т	+15 +5 +20	D	450 500	2W 2H	160 165 170 180	11UI		D6		
	1000000	10M	+10 +50	Y	550 600 630	25 26 2J	190 200 215 210	2L 2A				
	2200000	15M 22M	+10 +30	н		23	210 210 220 240 250 260 270	2N 2Q 2R				
	3300000	33M					260 270	2S 2T				

Version


Page

4

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Ρασρ	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

	ITEM				PERFO	RMANC	ĽЕ			
	Rated voltage									
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
	Surge voltage (SV)			<u> </u>				1		
4.2	Nominal capacitance (Tolerance)	Condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria>	requency oltage emperati	: No ure : 20)±2℃	han 0.5V				
4.3	Leakage current	Condition> Connecting t minutes, and <criteria> Refer to Table</criteria>	he capac then, me				istor (1	$k\Omega \pm 10$	Ω) in se	eries for 2
4.4	tan δ	<condition> See 4.2, Norr <criteria> Refer to Table</criteria></condition>	m Capac	itance, fo	r measui	ing frequ	iency, vo	oltage and	l tempera	ture.
4.5	Terminal strength		ength of capacitor rength of apacitor,	, applied Termina applied fo nds, and d wire	force to ls. orce to b then ber Tens	ent the te	rminal (0° to its	1~4 mm 1	from the r position v force N gf)	ubber) fo

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		STEP	Testi	ng Tempe	rature(°C)			Time		
		1		$\frac{20\pm2}{20\pm2}$			Time to reach thermal equilibrium			um
		2		-40(-25)			to reach		-	
		3		$\frac{10(23)}{20\pm 2}$			to reach t		*	
		4		$105\pm$			to reach t			
		5		$\frac{109\pm}{20\pm2}$			to reach		•	
		<criteria></criteria>		20 - 2	-	Time	to reach		equilion	um
	a. tan δ shal more than 8 t				4.4The le	eakage cu	irrent me	easured s	hall not	
	Temperature	b. In step 5,	tan δ sha	all be with	hin the lin	nit of Iter	n 4.4The	leakage	current	shall no
4.6	characteristi	more than the	-							
4.0	cs	c. At-40°C (∙	-25℃), ii	mpedance	e (z) ratio s	shall not	exceed th	e value o	of the fol	llowing
		table.								
		Working Volta		6.3	10	16	25	35	50	63
		Z-25°C/Z+2		4	3	2	2	2	2	2
		Z-40°C/Z+2	20°C	8	6	4	3	3	3	3
		Working Volta	age (V)	100]					
		Z-25°C/Z+2	0	2	-					
		Z-40°C/Z+2	20°C	3						
		For capacitance value > 1000 μ F, Add 0.5 per another 1000 μ F for Z-25/Z+20°C,								
		For capacitan	ce value	$> 1000 \ \mu$	F, Add 0.:	5 per ano	ther 1000)µF for	Z-25/Z+	20°C,
		For capacitan	ice value	> 1000 µ		-				
		For capacitan Capacitance, ta			Add 1.0) per anot	her 1000	μ F for 2		
		Capacitance, ta	$an \delta$, and		Add 1.0) per anot	her 1000	μ F for 2		
		Capacitance, ta	an δ , and	d impedar	Add 1.0) per anot e measur	her 1000 ed at 120	μ F for 2 Hz.	Z-40°C/2	Z+20°C.
		Capacitance, ta <condition> According to</condition>	an ^δ , and IEC6038	d impedar 84-4No.4.	Add 1.0 nce shall b 13 method) per anot e measur ls, The ca	her 1000 ed at 120 pacitor is	μ F for 2 Hz.	Z-40°C/Z	Z+20°C.
		Capacitance, ta <condition> According to 105°C ±2 wi</condition>	an δ , and IEC6038 ith DC bi	d impedar 84-4No.4. ias voltage	Add 1.0 nce shall b 13 method e plus the r	b per anot e measur ls, The ca rated ripp	her 1000 ed at 120 pacitor is le current	μ F for 2 Hz. s stored a t for Tab	Z-40°C/Z at a temp ble 1. (T	$Z+20^{\circ}C$. erature of the sum of
		Capacitance, ta <condition> According to 105°C ±2 wi DC and rippl product shoul</condition>	an ⁸ , and IEC6038 ith DC bi le peak	d impedar 84-4No.4. ias voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red	l per anot e measur ls, The ca rated ripp kceed the	her 1000 ed at 120 pacitor is le current e rated w	μ F for Hz. s stored æ t for Tab yorking γ	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
	Load	Capacitance, ta <condition> According to 105°C ±2 wi DC and rippl product should result should</condition>	an ⁸ , and IEC6038 ith DC bi le peak	d impedar 84-4No.4. ias voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red	l per anot e measur ls, The ca rated ripp kceed the	her 1000 ed at 120 pacitor is le current e rated w	μ F for Hz. s stored æ t for Tab yorking γ	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
4.7	Load life	Capacitance, ta <condition> According to 105°C ±2 wi DC and rippl product should result should <criteria></criteria></condition>	an δ , and IEC6038 ith DC bi le peak v ld be testo meet the	d impedar 34-4No.4. as voltage voltage sl ed after 16 following	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table:	b per anot e measur ls, The ca rated ripp kceed the covering	her 1000 ed at 120 pacitor is le current e rated w time at at	μ F for Hz. s stored æ t for Tab yorking γ	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
4.7		Capacitance, ta <condition> According to 105°C ±2 wi DC and rippl product should <criteria> The character</criteria></condition>	an δ , and IEC6038 ith DC bi le peak ld be testo meet the <u>ristic sha</u>	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following <u>ill meet th</u>	Add 1.0 nee shall b 13 method e plus the r hall not ex 6 hours red g table: e followin	ls, The ca rated ripp cceed the covering	her 1000 ed at 120 pacitor is le current e rated w time at at ments.	μ F for Hz. s stored a t for Tab orking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
4.7	life	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ wi DC and rippl product should result should <criteria> The character Leakag</criteria></condition>	an δ , and IEC6038 ith DC bi le peak ld be testa meet the ristic sha ge curren	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following .ll meet th tt	Add 1.0 nce shall b 13 method e plus the n nall not ex 6 hours red g table: e followin Value in	b per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> <u>4.3 shall</u>	her 1000 ed at 120 pacitor is le current e rated w time at at <u>ments.</u> be satisfi	μ F for Z Hz. s stored a t for Tab rorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20°C. erature of he sum of Then th
4.7	life	Capacitance, ta <condition> According to 105°C ±2 wi DC and rippl product should result should <criteria> The character Leakag Capaci</criteria></condition>	an δ , and IEC6038 ith DC bi le peak ld be testo meet the <u>ristic sha</u>	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following .ll meet th tt	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within ±	b per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u>	her 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va	μ F for Z Hz. s stored a t for Tab corking v mospher ed ilue.	Z-40°C/2 at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ with DC and ripple product should <criteria> The character Leakag Capacitan δ</criteria></condition>	an δ , and IEC6038 ith DC bi le peak ld be testa meet the ristic sha ge curren itance Ch	d impedar 34-4No.4. ias voltage voltage sh ed after 16 following .ll meet th tt	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red g table: e followin Value in Within <u>+</u> Not more	b per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u>	her 1000 ed at 120 pacitor is le current rated w time at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab rorking v mospher ed ilue. specifie	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, ta <condition> According to 105°C ±2 wi DC and rippl product should result should <criteria> The character Leakag Capaci</criteria></condition>	an δ , and IEC6038 ith DC bi le peak ld be testa meet the ristic sha ge curren itance Ch	d impedar 34-4No.4. ias voltage voltage sh ed after 16 following .ll meet th tt	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours rec g table: e followin Value in Within ±	b per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u>	her 1000 ed at 120 pacitor is le current rated w time at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab rorking v mospher ed ilue. specifie	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ wi DC and rippl product should result should <criteria> The character Leakag Capacit tan δ Appea</criteria></condition>	an δ , and IEC6038 ith DC bi le peak v ld be testo meet the ristic sha ge curren itance Ch	d impedar 34-4No.4. ias voltage voltage sh ed after 16 following .ll meet th tt	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red g table: e followin Value in Within <u>+</u> Not more	b per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u>	her 1000 ed at 120 pacitor is le current rated w time at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab rorking v mospher ed ilue. specifie	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the tions. The
4.7	life	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ with DC and ripply product should <criteria> The character Leakag Capacit tan δ Appea</criteria></condition>	an δ , and IEC6038 ith DC bi le peak v ld be testo meet the ristic sha ge curren itance Ch	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following Ill meet th it nange	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red g table: e followin Value in Within <u>+</u> Not more There sha	b per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> <u>all be no</u>	her 1000 ed at 120 pacitor is le current e rated w time at at <u>ments.</u> be satisfi <u>initial va</u> leakage c	μ F for Z Hz. s stored a t for Tab rorking v mospher ed ilue. specifie	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ed value.	Z+20°C. erature of he sum of Then th tions. Th
4.7	life	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ with DC and ripply product should <criteria> The character Leakage Capacition> Appean The capacitors</criteria></condition>	an δ , and IEC6038 ith DC bi le peak ld be testa meet the ristic sha ge curren itance Ch rance	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following Ill meet th tt nange	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red g table: e followin Value in Within <u>±</u> Not more There sha th no volta	b per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> <u>all be no</u>	her 1000 ed at 120 pacitor is le current e rated w time at at <u>ments.</u> be satisfi <u>initial va</u> 0% of the leakage c	μ F for Z Hz. s stored a t for Tab rorking v mospher ed ilue. specifie of electro	Z-40°C/2 at a temp ble 1. (T voltage) tic condit	$\pm 2^{\circ}C$. erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for
4.7	life	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ with DC and ripply product should <criteria> The character Leakag Capacition> The capacitors 1000+48/0 horiginal Capacitors 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+1000 horiginal 10000+1000 horiginal 1000+1000 horiginal 10000+1000 horiginal 10000+1000 horiginal 10000+10000 horiginal 10000+10000 horiginal 10000000 horiginal 1000000000000000000000000000000000000</criteria></condition>	an δ , and IEC6038 ith DC bi le peak v ld be testa meet the <u>ristic sha</u> ge curren itance Ch rrance	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following <u>ill meet th</u> nange	Add 1.0 nce shall b 13 method e plus the n nall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period t	b per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> all be no	her 1000 ed at 120 pacitor is le current e rated w time at at <u>ments.</u> be satisfi initial va 0% of the leakage of ed at a ten tors shall	μ F for Z Hz. s stored a t for Tab rorking v mospher ed llue. specifie of electro	Z-40°C/2 at a temp ole 1. (T voltage) tic condit ed value. olyte.	$\pm 2^{\circ}C$. erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for m the te
4.7	life test	Capacitance, ta Condition> According to 105°C ± 2 wi DC and ripply product should <br< td=""><td>an δ, and IEC6038 ith DC bi le peak v ld be teste meet the ristic sha ge curren itance Ch rance are then ours. Foll be allow</td><td>d impedar 84-4No.4. ias voltage voltage sh ed after 16 following 11 meet th th nange stored wi lowing thi ved to stal</td><td>Add 1.0 nce shall b 13 method e plus the n hall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period t bilized at</td><td>b per anot e measur ls, The ca rated ripp ceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> all be no he capaci room ten</td><td>her 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage c ed at a ten tors shall pperature</td><td> µ F for Z Hz. s stored a t for Tab rorking v mospher ed lue. specifie of electron mperature be remove for 4~8 </td><td>Z-40°C/2 at a temp ble 1. (T voltage) ic condit cd value. alyte. re of 105 oved from a hours. 1</td><td>$\pm 2^{\circ}C$ for the sum of the sum of Then the tions. The $\pm 2^{\circ}C$ for m the te Next the</td></br<>	an δ , and IEC6038 ith DC bi le peak v ld be teste meet the ristic sha ge curren itance Ch rance are then ours. Foll be allow	d impedar 84-4No.4. ias voltage voltage sh ed after 16 following 11 meet th th nange stored wi lowing thi ved to stal	Add 1.0 nce shall b 13 method e plus the n hall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period t bilized at	b per anot e measur ls, The ca rated ripp ceed the covering <u>g require</u> <u>4.3 shall</u> <u>25% of</u> <u>e than 200</u> all be no he capaci room ten	her 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage c ed at a ten tors shall pperature	 µ F for Z Hz. s stored a t for Tab rorking v mospher ed lue. specifie of electron mperature be remove for 4~8 	Z-40°C/2 at a temp ble 1. (T voltage) ic condit cd value. alyte. re of 105 oved from a hours. 1	$\pm 2^{\circ}C$ for the sum of the sum of Then the tions. The $\pm 2^{\circ}C$ for m the te Next the
4.7	life	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ with DC and ripply product should <criteria> The character Leakag Capacition> The capacitors 1000+48/0 horiginal Capacitors 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+48/0 horiginal 1000+1000 horiginal 10000+1000 horiginal 1000+1000 horiginal 10000+1000 horiginal 10000+1000 horiginal 10000+10000 horiginal 10000+10000 horiginal 10000000 horiginal 1000000000000000000000000000000000000</criteria></condition>	an δ , and IEC6038 ith DC bi le peak v ld be teste meet the ristic sha ge curren itance Ch rance are then burs. Foll be allow nected to	d impedar 34-4No.4. ias voltage sh ed after 16 following 11 meet th tt nange	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha th no volta is period t bilized at limiting re	b per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> 4.3 shall <u>c 25% of</u> e than 200 all be no all be no mage applic he capaci room ten esistor(11	ther 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage of ed at a ten tors shall pperature $t \pm 100 \Omega$	μ F for 2 Hz. s stored a t for Tab vorking v mospher ed ilue. specifie of electro mperatur l be rema for 4~8) with I	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit ed value. blyte. re of 105 oved from blours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical fields of the sum of the s
	life test Shelf	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ wi DC and ripply product should <criteria> The character Leakag Capacitan δ Appea <condition> The capacitors 1000+48/0 ho chamber and shall be controls</condition></criteria></condition>	an δ , and IEC6038 ith DC bi le peak v ld be testa meet the ristic sha ge curren itance Ch rance are then ours. Foll be allow nected to Omin. Aft	d impedar 34-4No.4. ias voltage sh ed after 16 following 11 meet th tt nange	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha th no volta is period t bilized at limiting re	b per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> 4.3 shall <u>c 25% of</u> e than 200 all be no all be no mage applic he capaci room ten esistor(11	ther 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage of ed at a ten tors shall pperature $t \pm 100 \Omega$	μ F for 2 Hz. s stored a t for Tab vorking v mospher ed ilue. specifie of electro mperatur l be rema for 4~8) with I	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit ed value. blyte. re of 105 oved from blours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical fields of the sum of the s
	life test Shelf life	Capacitance, ta <condition> According to $105^{\circ}C \pm 2$ with DC and ripply product should <criteria> The character Leakag Capacition> The capacitors 1000+48/0 hoc chamber and shall be contain applied for 30</criteria></condition>	an δ , and IEC6038 ith DC bi le peak v ld be testa meet the ristic sha ge curren itance Ch rance are then ours. Foll be allow nected to Omin. Aft	d impedar 34-4No.4. ias voltage sh ed after 16 following 11 meet th tt nange	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>4</u> Not more There sha th no volta is period t bilized at limiting re	b per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> 4.3 shall <u>c 25% of</u> e than 200 all be no all be no mage applic he capaci room ten esistor(11	ther 1000 ed at 120 pacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage of ed at a ten tors shall pperature $t \pm 100 \Omega$	μ F for 2 Hz. s stored a t for Tab vorking v mospher ed ilue. specifie of electro mperatur l be rema for 4~8) with I	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit ed value. blyte. re of 105 oved from blours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical fields of the sum of the s

Version	01	Page	7

		<criteria></criteria>	4 6 11
		The characteristic shall meet	
	C1- 1f	Leakage current	Value in 4.3 shall be satisfied
4.8	Shelf life	Capacitance Change	Within $\pm 25\%$ of initial value.
test		tan δ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
			stored more than 1 year, the leakage current may
		increase. Please apply voltage	e through about 1 k Ω resistor, if necessary.
		The capacitor shall be submi	e capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor. tted to 1000 cycles, each consisting of charge of $30 \pm 5s$,
		followed discharge of 5 min	
		The test temperature shall b	
		C _R :Nominal Capacitance (<criteria></criteria>	μ F)
1.0	Surge		Not more than the specified value
4.9	test	Leakage current	Not more than the specified value.
		Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		Attention: This test simulates over volta over voltage as often applied	ge at abnormal situation only. It is not applicable to such
		perpendicular directions. Vibration frequency ra	all be applied for 2 hours in each 3 mutually ange : 10Hz ~ 55Hz
4.10	Vibration test	in place with a bracket. 4mm or les	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30° s To be soldered

Version	01		Page	8
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.11	Solderability test	<condition> The capacitor shall be tested under the following conditions: Soldering temperature : 245±3°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s <criteria> A minimum of 95% of the surface being immersed</criteria></condition>
4.12	Resistance to solder heat test	<condition> Terminals of the capacitor shall be immersed into solder bath at $260 \pm 5^{\circ}$C for $10 \pm$ 1 seconds or $400 \pm 10^{\circ}$C for 3^{+1}_{-0} seconds to $1.5 \sim 2.0$mm from the body of capacitor . Then the capacitor shall be left under the normal temperature and normal humidity for $1 \sim 2$ hours before measurement.<criteria>Leakage currentNot more than the specified value. Capacitance ChangeWithin $\pm 10\%$ of initial value. tan δNot more than the specified value.AppearanceThere shall be no leakage of electrolyte.</criteria></condition>
4.13	Change of temperature test	<condition> Temperature Cycle:According to IEC60384-4No.4.7methods, capacitor shall be placed in an oven, the condition according as below:TemperatureTime (1)+20°C(1)+20°C≤ 3 Minutes(2)Rated low temperature (-40°C) (-25°C)30 ± 2 Minutes(3)Rated high temperature (+105°C)30 ± 2 Minutes(1) to (3)=1 cycle, total 5 cycleCriteria>The characteristic shall meet the following requirementLeakage currentNot more than the specified value. tan δNot more than the specified value.AppearanceThere shall be no leakage of electrolyte.</condition>
4.14	Damp heat test	<condition> Humidity Test: According to IEC60384-4No.4.12 methods, capacitor shall be exposed for 500 ± 8 hours in an atmosphere of $90 \sim 95\%$R H .at $40 \pm 2\%$, the characteristic change shall meet the following requirement. <criteria> Leakage current Not more than the specified value. Capacitance Change Within $\pm 20\%$ of initial value. tan δ Not more than 120% of the specified value. Appearance There shall be no leakage of electrolyte.</criteria></condition>

Version 01 Page 9

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.15	Vent test	<condition> The following test only app with vent. D.C. test The capacitor is connected current selected from below <table 3=""> Diameter (mm) DC 22.4 or less Over 22.4</table></condition>	with its p	oolarity reve applied.			
		<criteria> The vent shall operate with pieces of the capacitor and/</criteria>		rous condit	ions such a	is flames of	r dispersion o
		Condition> The maximum permissibl at 120Hz and can be appl Table-1 The combined value of D rated voltage and shall no Frequency Multipliers: Coefficient Freq. (Hz)	ied at max 0.C voltag	kimum oper e and the pe	rating temp	erature	
	Maximum permissible	Cap. (µF) 15~33	0.45	0.55	0.70	0.90	1.00
4.16	(ripple current)	39~330 390~1000	0.60 0.65	0.70 0.75	0.85 0.90	0.95 0.98	1.00 1.00
		1200~3900	0.75	0.80	0.95	1.00	1.00

Version	01	Page	10
V CISIOII	01	1 450	10

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
D · (1	Polybrominated biphenyls (PBB)			
Brominated	Polybrominated diphenylethers(PBDE) (including			
organic	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	pounds(TBT)			
Triphenyltin con	npounds(TPT)			
Asbestos				
Specific azo con	npounds			
Formaldehyde				
Beryllium oxide				
Beryllium copp	ber			
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)			
Perfluorooctane	sulfonates (PFOS)			
Specific Benzoti	riazole			

Version 01		Page	11
------------	--	------	----

Attachment: Application Guidelines

1.Circuit Design

(2)

- 1.1 Operating Temperature and Frequency
- Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 b) At human temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanb increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12

(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification. 1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths. 1.7 The Product endurance should take the sample as the standard. 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling. 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures. CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure. 2.Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. 2.2 Capacitor Insertion (1) Verify the correct capacitance and rated voltage of the capacitor. (2) Verify the correct polarity of the capacitor before inserting. (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. 2.4 Flow Soldering (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.

- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.
- 2.8 Mounting Adhesives and Coating Agents
 - When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures. If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
- If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte of gas is ingested by month, gargie with water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000 Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01	Page	14

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.